lower triangular matrix - significado y definición. Qué es lower triangular matrix
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es lower triangular matrix - definición

SPECIAL KIND OF SQUARE MATRIX
Upper-triangular matrix; Lower triangular matrix; Upper triangular matrix; Lower-triangular matrix; Upper triangular; Triangular factor; Trapezoidal matrix; Triangular matrices; Strictly upper triangular matrix; Strictly lower triangular matrix; Unit triangular matrix; Upper-triangular; Upper triangular matrices; Triangular form; Upper triangular form; Lower triangular form; Lower triangular; Back substitution; Backsubstitution; Back-substitution; Unitriangular matrix; Forward substitution; Right triangular matrix; Left triangular matrix; Gauss matrix; Triangularizable; Simultaneously triangularizable; Strictly upper triangular; Unitriangular; Triangularisability; Triangularizability
  • powers of the 4-bit Gray code permutation]].

Triangular matrix         
In the mathematical discipline of linear algebra, a triangular matrix is a special kind of square matrix. A square matrix is called if all the entries above the main diagonal are zero.
Band matrix         
MATRIX WITH NON-ZERO ELEMENTS ONLY IN A DIAGONAL BAND
Bandwidth (matrix theory); Bandwith (matrix); Matrix bandwidth; Banded matrix; Bandwidth (sparse matrix); Bandwidth (linear algebra); Bandwidth (matrix); Lower bandwidth of a matrix; Matrix band
In mathematics, particularly matrix theory, a band matrix or banded matrix is a sparse matrix whose non-zero entries are confined to a diagonal band, comprising the main diagonal and zero or more diagonals on either side.
MATRIX MATH         
  • The vectors represented by a 2-by-2 matrix correspond to the sides of a unit square transformed into a parallelogram.
  • orientation]], since it turns the counterclockwise orientation of the vectors to a clockwise one.
  • 150px
  • 150px
  • 150px
  • An example of a matrix in Jordan normal form. The grey blocks are called Jordan blocks.
  • An undirected graph with adjacency matrix:
<math display="block">\begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}.</math>
  • Two different Markov chains. The chart depicts the number of particles (of a total of 1000) in state "2". Both limiting values can be determined from the transition matrices, which are given by <math>
\begin{bmatrix}
 0.7 & 0\\
 0.3 & 1
\end{bmatrix}</math> (red) and <math>
\begin{bmatrix}
 0.7 & 0.2\\
 0.3 & 0.8
\end{bmatrix}</math> (black).
  • Schematic depiction of the matrix product '''AB''' of two matrices '''A''' and '''B'''.
  • 125px
  • indefinite]].
  • 125px
  • 150px
  • 175px
RECTANGULAR ARRAY OF NUMBERS, SYMBOLS, OR EXPRESSIONS, ARRANGED IN ROWS AND COLUMNS
Matrix (Mathematics); Matrix (math); Submatrix; Matrix theory; Matrix (maths); Submatrices; Matrix Theory and Linear Algebra; Infinite matrix; Square (matrix); Matrix operation; Square submatrix; Matrix(mathematics); Real matrix; Matrix math; Matrix index; Equal matrix; Matrix equation; Matrix (computer science); Matrix notation; Empty matrix; Real matrices; Principal submatrix; Array (mathematics); Matrix power; Complex matrix; Complex matrices; Applications of matrices; Rectangular matrix; Uniform matrix
<language> An early system on the UNIVAC I or II. [Listed in CACM 2(5):1959-05-16]. (1997-02-27)

Wikipedia

Triangular matrix

In mathematics, a triangular matrix is a special kind of square matrix. A square matrix is called lower triangular if all the entries above the main diagonal are zero. Similarly, a square matrix is called upper triangular if all the entries below the main diagonal are zero.

Because matrix equations with triangular matrices are easier to solve, they are very important in numerical analysis. By the LU decomposition algorithm, an invertible matrix may be written as the product of a lower triangular matrix L and an upper triangular matrix U if and only if all its leading principal minors are non-zero.